Nonenzymatic function of Aldolase A downregulates miR-145 to promote the Oct4/DUSP4/TRAF4 axis and the acquisition of lung cancer stemness

醛缩酶 A 的非酶功能下调 miR-145 以促进 Oct4/DUSP4/TRAF4 轴和肺癌干细胞的获得

阅读:5
作者:Yu-Chan Chang #, Yi-Fang Yang #, Jean Chiou, Hsing-Fang Tsai, Chih-Yeu Fang, Chih-Jen Yang, Chi-Long Chen, Michael Hsiao

Abstract

Drug resistance remains a serious issue of clinical importance and is a consequence of cancer stemness. In this study, we showed that the level of Aldolase A (ALDOA) expression is significantly associated with the IC50 value of chemotherapy drugs in lung cancer. Our data revealed that ALDOA overexpression resulted in a significant increase of lung tumor spheres. The use of ingenuity pathway analysis (IPA) resulted in the identification of POU5F1 (Oct4) as the leading transcription factor of ALDOA. We observed high expression of ALDOA, Oct4 and stemness markers in collected spheroid cells. DUSP4 and TRAF4 were confirmed as major downstream targets of the ALDOA-Oct4 axis. Knockdown of these molecules significantly decreased the stemness ability of cells. In addition, we investigated whether miR-145 targets the 3'-UTR of Oct4 and is regulated by ALDOA due to the involvement of ALDOA in glycolysis and metabolic reprogramming. Furthermore, we constructed several mutant forms of ALDOA that disrupted its enzymatic activity and showed that they still induced significant in vitro sphere formation and in vivo tumorigenicity. These results demonstrated that ALDOA-mediated spheroid formation is independent of its enzymatic activity. In the clinical component, we also showed that the combination of ALDOA and TRAF4 or DUSP4 is positively correlated with poor overall survival in a xenograft model and cancer patients through immunohistochemical analyses. The results of our study revealed novel functional roles of ALDOA in inducing cancer stemness via the inhibition of miR-145 expression and the activation of Oct4 transcription. These findings offer new therapeutic strategies for modulation of lung cancer stemness to enhance chemotherapeutic responses in lung cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。