Reconstructing targetable pathways in lung cancer by integrating diverse omics data

整合多种组学数据重建肺癌的可靶向途径

阅读:7
作者:O Alejandro Balbin, John R Prensner, Anirban Sahu, Anastasia Yocum, Sunita Shankar, Rohit Malik, Damian Fermin, Saravana M Dhanasekaran, Benjamin Chandler, Dafydd Thomas, David G Beer, Xuhong Cao, Alexey I Nesvizhskii, Arul M Chinnaiyan

Abstract

Global 'multi-omics' profiling of cancer cells harbours the potential for characterizing the signalling networks associated with specific oncogenes. Here we profile the transcriptome, proteome and phosphoproteome in a panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct targetable networks associated with KRAS dependency. We develop a two-step bioinformatics strategy addressing the challenge of integrating these disparate data sets. We first define an 'abundance-score' combining transcript, protein and phospho-protein abundances to nominate differentially abundant proteins and then use the Prize Collecting Steiner Tree algorithm to identify functional sub-networks. We identify three modules centred on KRAS and MET, LCK and PAK1 and β-Catenin. We validate activation of these proteins in KRAS-dependent (KRAS-Dep) cells and perform functional studies defining LCK as a critical gene for cell proliferation in KRAS-Dep but not KRAS-independent NSCLCs. These results suggest that LCK is a potential druggable target protein in KRAS-Dep lung cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。