Application of non-ionic liquids-based modified dielectrics during electric discharge machining (EDM) of Ti6Al4V alloy to enhance machining efficiency and process optimization

非离子液体基改性介电体在 Ti6Al4V 合金电火花加工 (EDM) 中的应用,以提高加工效率和工艺优化

阅读:4
作者:Muhammad Umar Farooq, Mehdi Tlija, Shafahat Ali, Anamta Khan, Adeolu A Adediran

Abstract

The non-conventional manufacturing technologies are notorious when it comes to productivity and processing time in production-related industries. However, the aerospace and other high-end sectors enjoy another quality matrix of these processes and compromise on the processing time. For instance, the machinability of hard-to-cut materials such as Ti6Al4V aerospace alloy for micro-impressions is challenging and commonly carried out through non-conventional processes. Among these processes, the electric discharge machining (EDM) is famous for machining Ti6Al4V. In the current study, the EDM process is enhanced through modified dielectrics such as kerosene with non-ionic liquids (span 20, 60, and 80) and cryogenically treated tool electrodes (aluminum and graphite), and is compared to the conventional kerosene-based process. A three-phase experimental campaign is deployed to explore parametric effects including modified dielectric conditions (non-ionic liquid type and concentration), tool material, and machine parameter pulse ON:OFF time. A total of 60 experiments (54 modified dielectrics and 6 as baseline) were performed to explore process physics. The statistical analyses show that the unmodified process (kerosene dielectric-based) results in the least favorable results 0.58 mm3/min against cryo-graphite and 1.2 mm3/min against cryo-aluminum electrodes. However, the modified dielectrics outperform and improve process dynamics by altering dielectric conditions through hydrophilic-lipophilic balance. Surface morphological analysis shows significantly shallow craters on the machined surface showing evidence of effective flushing through a modified dielectric (S-20) as compared to a kerosene-based dielectric. A thorough microscopical, statistical, and scanning electron-based analysis is carried out to explain the process and correlate significant improvements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。