Time- and temperature-dependent postmortem concentration changes of the (synthetic) cannabinoids JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol following pulmonary administration to pigs

给猪肺部注射(合成)大麻素 JWH-210、RCS-4 以及 ∆9-四氢大麻酚后,其死后浓度随时间和温度的变化

阅读:4
作者:Nadine Schaefer, Ann-Katrin Kröll, Christina Körbel, Matthias W Laschke, Michael D Menger, Hans H Maurer, Markus R Meyer, Peter H Schmidt

Abstract

In forensic toxicology, interpretation of postmortem (PM) drug concentrations might be complicated due to the lack of data concerning drug stability or PM redistribution (PMR). Regarding synthetic cannabinoids (SC), only sparse data are available, which derived from single case reports without any knowledge of dose and time of consumption. Thus, a controlled pig toxicokinetic study allowing for examination of PMR of SC was performed. Twelve pigs received a pulmonary dose of 200 µg/kg BW each of 4-ethylnaphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-210), 2-(4-methoxyphenyl)-1-(1-pentyl-indole-3-yl)methanone (RCS-4), and Δ9-tetrahydrocannabinol via an ultrasonic nebulizer. Eight hours after, the pigs were put to death with T61 and specimens of relevant tissues and body fluids were collected. Subsequently, the animals were stored at room temperature (n = 6) or 4 °C (n = 6) and further samples were collected after 24, 48, and 72 h each. Concentrations were determined following enzymatic cleavage and solid-phase extraction by liquid-chromatography tandem mass spectrometry applying the standard addition approach. High concentrations of the parent compounds were observed in lung, liver, kidney and bile fluid/duodenum content as well as brain. HO-RCS-4 was the most prevalent metabolite detected in PM specimens. In general, changes of PM concentrations were found in every tissue and body fluid depending on the PM interval as well as storage temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。