METTL3-Mediated N6-Methyladenosine Modification Is Involved in the Dysregulation of NRIP1 Expression in Down Syndrome

METTL3 介导的 N6-甲基腺苷修饰与唐氏综合症中 NRIP1 表达失调有关

阅读:4
作者:Weili Shi, Fan Yang, Ranran Dai, Yafei Sun, Yan Chu, Shixiu Liao, Bingtao Hao

Abstract

Down syndrome (DS) is a common genetic condition in which a person is born with an extra copy of chromosome 21. Intellectual disability is the most common characteristic of DS. N6-methyladenosine (m6A) is a common RNA modification that is implicated in many biological processes. It is highly enriched within the brain and plays an essential role in human brain development. However, the mRNA m6A modification in the fetal brain of DS has not been explored. Here, we report m6A mRNA profiles and mRNA expression profiles of fetal brain cortex tissue from DSs and controls. We observed that the m6A modification in DS brain tissues was reduced genome-wide, which may be due to decreased the m6A methyltransferase like 3 (METTL3) protein expression. The nuclear receptor-interacting protein 1 (NRIP1/RIP140) is coded by a highly conserved chromosome 21 (Hsa21) gene. Overexpression of NRIP1 is associated with mitochondrial dysfunction in DS. The NRIP1 mRNA increased in fetal brain tissues of DS, whereas the m6A modification of the NRIP1 mRNA significantly decreased. METTL3 knockdown reduced the m6A modification of NRIP1 mRNA and increased its expression, and an increase in NRIP1 m6A modification and a decrease in its expression were observed in METTL3-overexpressed cells. The Luciferase reporter assay confirmed that METTL3 regulates NRIP1 expression in an m6A-dependent manner. The decay rate of NRIP1 mRNA was significantly reduced in METTL3-knockdown cells but increased in METTL3-overexpressed cells. We proposed that the m6A modification of NRIP1 mRNA in DS fetal brain tissue is reduced, reducing its transcript degradation rate, resulting in abnormally increased expression of NRIP1, at least partially, in the DS brain. It provides a new mechanism for the molecular pathology of DS and leads to a new insight that may become therapeutically relevant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。