Automated, scalable culture of human embryonic stem cells in feeder-free conditions

在无饲养层条件下实现人类胚胎干细胞的自动化、可扩展培养

阅读:9
作者:Rob J Thomas, David Anderson, Amit Chandra, Nigel M Smith, Lorraine E Young, David Williams, Chris Denning

Abstract

Large-scale manufacture of human embryonic stem cells (hESCs) is prerequisite to their widespread use in biomedical applications. However, current hESC culture strategies are labor-intensive and employ highly variable processes, presenting challenges for scaled production and commercial development. Here we demonstrate that passaging of the hESC lines, HUES7, and NOTT1, with trypsin in feeder-free conditions, is compatible with complete automation on the CompacT SelecT, a commercially available and industrially relevant robotic platform. Pluripotency was successfully retained, as evidenced by consistent proliferation during serial passage, expression of stem cell markers (OCT4, NANOG, TRA1-81, and SSEA-4), stable karyotype, and multi-germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Automation of hESC culture will expedite cell-use in clinical, scientific, and industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。