Effect of genetic polymorphisms rs2301113 and rs2057482 in the expression of HIF-1α protein in periodontal ligament fibroblasts subjected to compressive force

基因多态性rs2301113和rs2057482对压力作用下牙周膜成纤维细胞HIF-1α蛋白表达的影响

阅读:6
作者:Erika Calvano Küchler, Vinicius Broska Teodoro, Agnes Schröder, Ute Nazet, Michelle Nascimento Meger, Patricia Valéria Manozzo Kunz, Flares Baratto-Filho, Gerrit Spanier, Rafaela Scariot, Peter Proff, Christian Kirschneck

Conclusions

Our study confirms that compressive pressure application enhances HIF-1α protein expression. We could not prove that the genetic polymorphisms in HIF1A affect HIF-1α protein expression by periodontal ligament fibroblasts during simulated orthodontic compressive force.

Objective

Many genes and signaling molecules are involved in orthodontic tooth movement, with mechanically and hypoxically stabilized HIF-1α having been shown to play a decisive role in periodontal ligament signaling during orthodontic tooth movement. Thus, this in vitro study aimed to investigate if genetic polymorphisms in HIF1A (Hypoxia-inducible factor α-subunits) influence the expression pattern of HIF-1α protein during simulated orthodontic compressive pressure. Methodology: Samples from human periodontal ligament fibroblasts were used and their DNA was genotyped using real time Polymerase chain reaction for the genetic polymorphisms rs2301113 and rs2057482 in HIF1A . For cell culture and protein expression experiments, six human periodontal ligament fibroblast cell lines were selected based on the patients' genotype. To simulate orthodontic compressive pressure in fibroblasts, a 2 g/cm2 force was applied under cell culture conditions for 48 hours. Protein expression was evaluated by Western Blot. Paired t-tests were used to compare HIF-1α expression with and without compressive pressure application and unpaired t-tests were used to compare expression between the genotypes in rs2057482 and rs2301113 (p<0.05).

Results

The expression of HIF-1α protein was significantly enhanced by compressive pressure application regardless of the genotype (p<0.0001). The genotypes in the genetic polymorphisms rs2301113 and rs2057482 were not associated with HIF-1α protein expression (p>0.05). Conclusions: Our study confirms that compressive pressure application enhances HIF-1α protein expression. We could not prove that the genetic polymorphisms in HIF1A affect HIF-1α protein expression by periodontal ligament fibroblasts during simulated orthodontic compressive force.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。