Cancer Therapeutic siRNA Delivery and Imaging by Nitrogen- and Neodymium-Doped Graphene Quantum Dots

通过氮和钕掺杂的石墨烯量子点进行癌症治疗 siRNA 传递和成像

阅读:7
作者:Alina R Valimukhametova, Bong Han Lee, Ugur C Topkiran, Klara Gries, Roberto Gonzalez-Rodriguez, Jeffery L Coffer, Giridhar Akkaraju, Anton Naumov

Abstract

While small interfering RNA (siRNA) technology has become a powerful tool that can enable cancer-specific gene therapy, its translation to the clinic is still hampered by the inability of the genes alone to cell transfection, poor siRNA stability in blood, and the lack of delivery tracking capabilities. Recently, graphene quantum dots (GQDs) have emerged as a novel platform allowing targeted drug delivery and fluorescence image tracking in visible and near-infrared regions. These capabilities can aid in overcoming primary obstacles to siRNA therapeutics. Here, for the first time, we utilize biocompatible nitrogen- and neodymium-doped graphene quantum dots (NGQDs and Nd-NGQDs, respectively) for the delivery of Kirsten rat sarcoma virus (KRAS) and epidermal growth factor receptor (EGFR) siRNA effective against a variety of cancer types. GQDs loaded with siRNA noncovalently facilitate successful siRNA transfection into HeLa cells, confirmed by confocal fluorescence microscopy at biocompatible GQD concentrations of 375 μg/mL. While the GQD platform provides visible fluorescence tracking, Nd doping enables deeper-tissue near-infrared fluorescence imaging suitable for both in vitro and in vivo applications. The therapeutic efficacy of the GQD/siRNA complex is verified by successful protein knockdown in HeLa cells at nanomolar siEGFR and siKRAS concentrations. A range of GQD/siRNA loading ratios and payloads are tested to ultimately provide substantial inhibition of protein expression down to 31-45%, comparable with conventional Lipofectamine-mediated delivery. This demonstrates the promising potential of GQDs for the nontoxic delivery of siRNA and genes in general, complemented by multiwavelength image tracking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。