Micro-laminin gene therapy can function as an inhibitor of muscle disease in the dyW mouse model of MDC1A

微层粘连蛋白基因疗法可作为 MDC1A dyW 小鼠模型中肌肉疾病的抑制剂

阅读:6
作者:Davin Packer, Paul T Martin

Abstract

Gene replacement for laminin-α2-deficient congenital muscular dystrophy 1A (MDC1A) is currently not possible using a single adeno-associated virus (AAV) vector due to the large size of the LAMA2 gene. LAMA2 encodes laminin-α2, a subunit of the trimeric laminin-211 extracellular matrix (ECM) protein that is the predominant laminin expressed in skeletal muscle. LAMA2 expression stabilizes skeletal muscle, in part by binding membrane receptors via its five globular (G) domains. We created a small, AAV-deliverable, micro-laminin gene therapy that expresses these G1-5 domains, LAMA2(G1-5), to test their therapeutic efficacy in the dyW mouse model for MDC1A. We also fused the heparin-binding (HB) domain from HB epidermal growth factor-like growth factor (HB-EGF) to LAMA2(G1-5) to test whether this would increase muscle ECM expression. dyW mice treated intravenously with rAAV9.CMV.HB-LAMA2(G1-5) showed increased muscle ECM expression of transgenic protein relative to mice treated with rAAV9.CMV.LAMA2(G1-5) and showed improved weight-normalized forelimb grip strength relative to untreated dyW mice. Additionally, dyW muscle fibers expressing either micro-laminin protein showed some measures of reduced pathology, although levels of muscle cell apoptosis and inflammation were not decreased. Although systemic expression of rAAV9.CMV.HB-LAMA2(G1-5) did not inhibit all disease phenotypes, these studies demonstrate the feasibility of using a micro-laminin gene therapy strategy to deliver gene replacement for MDC1A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。