Insights into the mechanism(s) of von Willebrand factor degradation during mechanical circulatory support

深入了解机械循环支持过程中血管性血友病因子降解的机制

阅读:6
作者:Carlo R Bartoli, Sujith Dassanayaka, Kenneth R Brittian, Andrew Luckett, Srinivas Sithu, Thorsten Siess, Daniel H Raess, Paul A Spence, Steven C Koenig, Robert D Dowling, Stanley E D'Souza

Conclusions

Hemodynamic activation of vWF and increased plasma ADAMTS-13 activity may have reduced high-molecular-weight vWF multimers and thereby impaired the vWF-platelet aggregation pathway. Additional delineation of these pathways may improve management of left ventricular assist device-associated bleeding.

Methods

In 25 calves (weight, 80-110 kg), the inflow/outflow graft of the Symphony Heart Assist System was sewn end-to-side to the carotid artery. Support was initiated (acute, n = 4; 1 week, n = 16; 2 weeks, n = 5). Acutely, carotid artery pressure and flow were measured to evaluate the hemodynamic changes near the anastomosis. At baseline and after ≤2 weeks of support, platelet aggregometry with adenosine 5'-diphosphate, collagen, and ristocetin was performed. Gel electrophoresis and wet immunoblotting qualitatively evaluated vWF multimers and quantified plasma ADAMTS-13, the vWF-cleaving protease. Carotid arterial rings near the anastomosis were studied with immunohistochemical staining for ADAMTS-13 and were cultured to quantify endothelial ADAMTS-13 production. Fluorescent resonance energy transfer was used to evaluate the enzymatic activity of ADAMTS-13 in the plasma and in supernatant from cultured carotid arterial rings. Plasma interleukin-6, which inhibits ADAMTS-13 activity, was measured using an enzyme-linked immunosorbent assay.

Objective

Left ventricular assist device support produces a bleeding diathesis. Evidence suggests a major role for von Willebrand factor (vWF). We examined vWF metabolism in a preclinical model of short-term mechanical circulatory support.

Results

During support, statistically significant (P < .05) changes in the carotid endothelium arterial hemodynamics were observed. The highest molecular weight vWF multimers were absent, and the vWF-ristocetin platelet aggregation pathway was significantly impaired. A modest but significant increase in plasma ADAMTS-13 protein and activity was observed. ADAMTS-13 decreased significantly in the carotid near the anastomosis but increased significantly in supernatant from cultured carotid arterial rings. The plasma interleukin-6 levels did not change significantly. Conclusions: Hemodynamic activation of vWF and increased plasma ADAMTS-13 activity may have reduced high-molecular-weight vWF multimers and thereby impaired the vWF-platelet aggregation pathway. Additional delineation of these pathways may improve management of left ventricular assist device-associated bleeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。