In situ MgO nanoparticle-doped Janus electrospun dressing against bacterial invasion and immune imbalance for irregular wound healing

原位掺杂 MgO 纳米粒子的 Janus 电纺敷料可抵抗细菌侵袭和免疫失衡,从而改善不规则伤口愈合

阅读:7
作者:Tao Zhou, Yedan Chen, Liangmin Fu, Shan Wang, Haihu Ding, Qiaosheng Bai, Jingjing Guan, Yingji Mao

Abstract

Owing to the unpredictable size of wounds and irregular edges formed by trauma, nanofibers' highly customizable and adherent in situ deposition can contribute to intervention in the healing process. However, electrospinning is limited by the constraints of conventional polymeric materials despite its potential for anti-inflammatory and antimicrobial properties. Here, inspired by the Janus structure and biochemistry of nanometal ions, we developed an in situ sprayed electrospinning method to overcome bacterial infections and immune imbalances during wound healing. The bilayer fiber scaffold has a hydrophobic outer layer composed of polycaprolactone (PCL) and a hydrophilic inner layer composed of gelatin, poly(L-lactic acid) (PLLA), and magnesium oxide nanoparticles, constituting the PCL/PLLA-gelatin-MgO (PPGM) electrospun scaffold. This electrospun scaffold blocked the colonization and growth of bacteria and remained stable on the wound for continuous anti-inflammatory properties to promote wound healing. Furthermore, PPGM electrospinning modulated collagen deposition and the inflammatory microenvironment in the full-thickness skin model, significantly accelerating vascularization and epithelialization progression. This personalized Janus electrospun scaffold has excellent potential as a new type of wound dressing for first aid and wound healthcare.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。