p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair

p97 促进 DNA 交联修复过程中解旋酶卸载的保守机制

阅读:7
作者:George Fullbright, Halley B Rycenga, Jordon D Gruber, David T Long

Abstract

Interstrand cross-links (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the cross-link from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying cross-link. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin. Eviction of the stalled helicase involves K48-linked polyubiquitylation of MCM7, p97-mediated extraction of CMG, and a largely degradation-independent mechanism of MCM7 deubiquitylation. Our results show that ICL repair and replication termination both utilize a similar mechanism to displace the CMG complex from chromatin. However, unlike termination, repair-mediated helicase unloading involves the tumor suppressor protein BRCA1, which acts upstream of MCM7 ubiquitylation and p97 recruitment. Together, these findings indicate that p97 plays a conserved role in dismantling the CMG helicase complex during different cellular events, but that distinct regulatory signals ultimately control when and where unloading takes place.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。