SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures

超声波和热产生的活性炭黑微观结构的 SEM、XRD 和 FTIR 分析

阅读:7
作者:Pratama Jujur Wibawa, Muhammad Nur, Mukhamad Asy'ari, Hadi Nur

Abstract

The microstructures of the activated carbon black microparticles (ACBMPs) generated through both treatments of 20 min ultrasonic and 400 °C thermal energy equivalent have been analyzed properly using scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transformed infrared (FTIR) spectroscopy methods. The research was aiming to generate binding or active sites points on the outer surface of the ACBMPs body of which commonly plays an important role in both adsorption and catalytic processes. It was observed that around 150 nm up to 400 nm in average diameter super macro voids with many various turns of nano-scale wells, and around 1.84 angstrom (Å) up to 15.98 Å intraparticle pores were generated. In addition, the parallel planes spacing of the carbonaceous framework sheets, namely d hkl in Miller indexes terminology, of about 4.44 Å up to 2.98 Å constructed the inner particles of the ACBMPs body. A new nomenclature method for the binding or active site shapes identification and classifying them into four categories based on the quadrants terminology, i.e. quadrant one (Q1), two (Q2), three (Q3) and four (Q4) is proposed. Each the quadrants contains four categories of turns types, i.e. sharp, semi sharp, obtuse and non-significant turns depending on the angle of the associated turn in radian angle, θ. Finally, it can be concluded that the combination of ultrasonic and thermal energy treatments in fabricating ACBMPs could generate binding or active site points with unique shapes as a transit terminal for any guest molecules, in this context is methyl red (MR) molecules to enter into the suitable intra-particles pores of the ACBMPs body.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。