Focal and generalized seizure activity after local hippocampal or cortical ablation of NaV 1.1 channels in mice

小鼠局部海马或皮质消融 NaV 1.1 通道后出现局灶性和全身性癫痫发作

阅读:5
作者:Nico A Jansen, Anisa Dehghani, Cor Breukel, Else A Tolner, Arn M J M van den Maagdenberg

Abstract

Early onset seizures are a hallmark of Dravet syndrome. Previous studies in rodent models have shown that the epileptic phenotype is caused by loss-of-function of voltage-gated NaV 1.1 sodium channels, which are chiefly expressed in γ-aminobutyric acid (GABA)ergic neurons. Recently, a possibly critical role has been attributed to the hippocampus in the seizure phenotype, as local hippocampal ablation of NaV 1.1 channels decreased the threshold for hyperthermia-induced seizures. However, the effect of ablation of NaV 1.1 channels restricted to cortical sites has not been tested. Here we studied local field potential (LFP) and behavior in mice following local hippocampal and cortical ablation of Scn1a, a gene encoding the α1 subunit of NaV 1.1 channels, and we compared seizure characteristics with those of heterozygous global knockout Scn1-/+ mice. We found a high incidence of spontaneous seizures following either local hippocampal or cortical ablation, notably during a transient time window, similar to Scn1a-/+ mice. Nonconvulsive seizure activity in the injected area was common and preceded generalized seizures. Moreover, mice were susceptible to hyperthermia-induced seizures. In conclusion, local ablation of NaV 1.1 channels in the hippocampus and cortex results in focal seizure activity that can generalize. These data indicate that spontaneous epileptic activity may initiate in multiple brain regions in Dravet syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。