Pharmacological Properties of Chromobacterium violaceum Violacein at the Human Serotonin 2C Receptor

紫色色杆菌紫色素对人类血清素 2C 受体的药理特性

阅读:6
作者:Letimicia S Fears, Mary E Curtis, Terrance L Johnson, Hugh M Fentress

Abstract

The monoamine neurotransmitter serotonin (5-HT) plays a role in many physiological responses by interacting with various receptor subtypes. The 5-HT2C receptor subtype is a 7-transmembrane, G protein-coupled receptor (GPCR) that is involved in neuronal excitability, spatial learning, mood, and appetite. The microorganism Chromobacterium violaceum produces a purple pigment, violacein, which can be extracted and purified. Violacein has antibiotic, antileishmanial, antifungal and antitumoral properties in various cancer cell lines. Violacein is derived from the amino acid tryptophan as is 5-HT and therefore, the two have similar chemical structures. However, no one has reported the activity of violacein at 5-HT receptors. Therefore the Fentress lab decided to investigate whether or not violacein had an effect on 5-HT2C receptor trafficking. Human Embryonic Kidney (HEK) 293 cells expressing fluorescently-tagged 5-HT2C receptor were treated with 5-HT, violacein, water or vehicle and then cells were fixed and visualized with fluorescent microscopy. Violacein treatment did not cause receptor internalization. Recent studies suggest that the 5-HT2C receptor can activate the JAK/STAT pathway. To see if violacein can modulate this pathway, HEK 293 cells expressing 5-HT2C receptor were treated with either 5-HT, violacein, or pretreated with violacein followed by incubation with 5-HT. Phosphorylation states of JAK2 and STAT3 were examined by immunoblotting. Results determined that 5-HT2C receptor activation had no effect on JAK2 phosphorylation and that violacein blocked STAT3 phosphorylation. Primary radioligand binding determined that violacein has a low affinity for 5-HT2C receptor but has a higher affinity for adrenergic receptors. Future studies will examine G protein-coupling by measuring phosphoinositide hydrolysis and cAMP assay to investigate adrenergic pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。