Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae

硅藻微藻功能化生物硅通过表皮组织细胞输送药物

阅读:10
作者:Danilo Vona, Annarita Flemma, Francesca Piccapane, Pietro Cotugno, Stefania Roberta Cicco, Vincenza Armenise, Cesar Vicente-Garcia, Maria Michela Giangregorio, Giuseppe Procino, Roberta Ragni

Abstract

Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。