De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime

在低数据环境下通过片段增强生成深度学习进行 Nurr1 激动剂的从头设计

阅读:6
作者:Marco Ballarotto, Sabine Willems, Tanja Stiller, Felix Nawa, Julian A Marschner, Francesca Grisoni, Daniel Merk

Abstract

Generative neural networks trained on SMILES can design innovative bioactive molecules de novo. These so-called chemical language models (CLMs) have typically been trained on tens of template molecules for fine-tuning. However, it is challenging to apply CLM to orphan targets with few known ligands. We have fine-tuned a CLM with a single potent Nurr1 agonist as template in a fragment-augmented fashion and obtained novel Nurr1 agonists using sampling frequency for design prioritization. Nanomolar potency and binding affinity of the top-ranking design and its structural novelty compared to available Nurr1 ligands highlight its value as an early chemical tool and as a lead for Nurr1 agonist development, as well as the applicability of CLM in very low-data scenarios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。