A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382

miR-22 的双重作用受 RelA/p65 调控,通过靶向 FOXP1 和 HDAC4 以及 Lys382 位点 p53 的组成性乙酰化,使氟维司群耐药乳腺癌细胞重新对氟维司群敏感

阅读:6
作者:Bo Wang, Dongping Li, Jody Filkowski, Rocio Rodriguez-Juarez, Quinn Storozynsky, Megan Malach, Emily Carpenter, Olga Kovalchuk

Abstract

Antiestrogen resistance is a major challenge encountered during the treatment of estrogen receptor alpha positive (ERα+) breast cancer. A better understanding of signaling pathways and downstream transcription factors and their targets may identify key molecules that can overcome antiestrogen resistance in breast cancer. An aberrant expression of miR-22 has been demonstrated in breast cancer; however, its contribution to breast cancer resistance to fulvestrant, an antiestrogen drug, remains unknown. In this study, we demonstrated a moderate elevation in miR-22 expression in the 182R-6 fulvestrant-resistant breast cancer line we used as a model system, and this elevation was positively correlated with the expression of the miRNA biogenesis enzymes AGO2 and Dicer. The level of phosphorylated HER2/neu at Tyr877 was also upregulated in these cells, whereas the level of RelA/p65 phosphorylated at Ser536 (p-p65) was downregulated. Knockdown of HER2/neu led to an induction of p-p65 and a reduction in miR-22 levels. Luciferase assays identified two NF-κB binding motifs in the miR-22 promoter that contributed to transcriptional repression of miR-22. Activation of RelA/p65, triggered by LPS, attenuated miR-22 expression, but this expression was restored by sc-514, a selective IKKβ inhibitor. Inhibition of miR-22 suppressed cell proliferation, induced apoptosis and caused cell cycle S-phase arrest, whereas enhancing expression of p21Cip1/Waf1 and p27Kip1. Surprisingly, ectopic expression of miR-22 also suppressed cell proliferation, induced apoptosis, caused S-phase arrest, and promoted the expression of p21Cip1/Waf1 and p27Kip1. Ectopic overexpression of miR-22 repressed the expression of FOXP1 and HDAC4, leading to a marked induction of acetylation of HDAC4 target histones. Conversely, inhibition of miR-22 promoted the expression of both FOXP1 and HDAC4, without the expected attenuation of histone acetylation. Instead, p53 acetylation at lysine 382 was unexpectedly upregulated. Taken together, our findings demonstrated, for the first time, that HER2 activation dephosphorylates RelA/p65 at Ser536. This dephosphoryalted p65 may be pivotal in transactivation of miR-22. Both increased and decreased miR-22 expression cause resensitization of fulvestrant-resistant breast cancer cells to fulvestrant. HER2/NF-κB (p65)/miR-22/HDAC4/p21 and HER2/NF-κB (p65)/miR-22/Ac-p53/p21 signaling circuits may therefore confer this dual role on miR-22 through constitutive transactivation of p21.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。