Efficiency of liquid tin(ii) n-alkoxide initiators in the ring-opening polymerization of l-lactide: kinetic studies by non-isothermal differential scanning calorimetry

液态锡(ii)n-醇盐引发剂在 l-丙交酯开环聚合中的效率:非等温差示扫描量热法动力学研究

阅读:3
作者:Montira Sriyai, Tawan Chaiwon, Robert Molloy, Puttinan Meepowpan, Winita Punyodom

Abstract

Novel soluble liquid tin(ii) n-butoxide (Sn(OnC4H9)2), tin(ii) n-hexoxide (Sn(OnC6H13)2), and tin(ii) n-octoxide (Sn(OnC8H17)2) initiators were synthesized for use as coordination-insertion initiators in the bulk ring-opening polymerization (ROP) of l-lactide (LLA). In order to compare their efficiencies with the more commonly used tin(ii) 2-ethylhexanoate (stannous octoate, Sn(Oct)2) and conventional tin(ii) octoate/n-alcohol (SnOct2/nROH) initiating systems, kinetic parameters derived from monomer conversion data were obtained from non-isothermal differential scanning calorimetry (DSC). In this work, the three non-isothermal DSC kinetic approaches including dynamic (Kissinger, Flynn-Wall, and Ozawa); isoconversional (Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW)); and Borchardt and Daniels (B/D) methods of data analysis were compared. The kinetic results showed that, under the same conditions, the rate of polymerization for the 7 initiators/initiating systems was in the order of liquid Sn(OnC4H9)2 > Sn(Oct)2/nC4H9OH > Sn(Oct)2 ≅ liquid Sn(OnC6H13)2 > Sn(Oct)2/nC6H13OH ≅ liquid Sn(OnC8H17)2 > Sn(Oct)2/nC8H17OH. The lowest activation energies (E a = 52, 59, and 56 kJ mol-1 for the Kissinger, Flynn-Wall, and Ozawa dynamic methods; E a = 53-60, 55-58, and 60-62 kJ mol-1 for the Friedman, KAS, and OFW isoconversional methods; and E a = 76-84 kJ mol-1 for the B/D) were found in the polymerizations using the novel liquid Sn(OnC4H9)2 as the initiator, thereby showing it to be the most efficient initiator in the ROP of l-lactide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。