Induction of cross-reactive HIV-1 specific antibody responses by engineered V1V2 immunogens with reduced conformational plasticity

通过降低构象可塑性的工程化 V1V2 免疫原诱导交叉反应 HIV-1 特异性抗体反应

阅读:4
作者:Jennifer I Lai, Susan K Eszterhas, Seth A Brooks, Chengzi Guo, Susan Zolla-Pazner, Michael S Seaman, Chris Bailey-Kellogg, Karl E Griswold, Margaret E Ackerman

Abstract

Antibodies against the HIV-1 V1V2 loops were the only correlate of reduced infection risk in the RV144 vaccine trial, highlighting the V1V2 loops as promising targets for vaccine design. The V1V2 loops are structurally plastic, exhibiting either an α-helix-coil or β-strand conformation. V1V2-specific antibodies may thus recognize distinct conformations, and an antibody's conformational specificity can be an important determinant of breadth and function. Restricting V1V2 conformational plasticity in an immunogen may thus provide control over the conformational specificity and quality of a vaccine-elicited antibody response. Previously, we identified a V1V2 sequence variant (K155M) that results in enhanced recognition by cross-reactive antibodies recognizing the β-strand conformation. Here, we relate V1V2 antigenicity to immunogenicity by comparing the immunogenicity profiles of wildtype and K155M immunogens in two mouse models. In one model, immunization with gp70 V1V2 K155M but not wildtype elicited antibody responses that were cross-reactive to a panel of heterologous gp120 and gp140 antigens. In a second model, we compared the effect of K155M on immunogenicity in the context of gp70 V1V2, gD V1V2 and gp120, examining the effects of scaffold, epitope-focusing and immunization regimen. K155M variants, especially in the context of a gp120 immunogen, resulted in more robust, durable and cross-reactive antibody responses than wildtype immunogens. Restriction of the β-stranded V1V2 conformation in K155M immunogens may thus be associated with the induction of cross-reactive antibody responses thought to be required of a protective HIV-1 vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。