Ascorbic Acid and Iron Supplement Treatment Improves Stem Cell-Mediated Cartilage Regeneration in a Minipig Model

抗坏血酸和铁补充剂治疗可改善小型猪模型中干细胞介导的软骨再生

阅读:5
作者:Ashok Joseph Theruvath, Elhussein Elbadry Mahmoud, Wei Wu, Hossein Nejadnik, Louise Kiru, Tie Liang, Stephen Felt, Heike Elisabeth Daldrup-Link

Background

The transplantation of mesenchymal stem cells (MSCs) into cartilage defects has led to variable cartilage repair outcomes. Previous in vitro studies have shown that ascorbic acid and reduced iron independently can improve the chondrogenic differentiation of MSCs. However, the combined effect of ascorbic acid and iron supplementation on MSC differentiation has not been investigated.

Conclusion

Pretreatment of MSCs with ascorbic acid and an FDA-approved iron supplement improved the chondrogenesis of MSCs and led to hyaline-like cartilage regeneration in the knee joints of minipigs. Clinical relevance: Ascorbic acid and iron supplements are immediately clinically applicable. Thus, these results, in principle, could be translated into clinical applications.

Methods

We pretreated bone marrow-derived MSCs with ascorbic acid and the FDA-approved iron supplement ferumoxytol and then transplanted the MSCs into full-thickness cartilage defects in the distal femurs of Göttingen minipigs. Untreated cartilage defects served as negative controls. We evaluated the cartilage repair site with magnetic resonance imaging at 4 and 12 weeks after MSC implantation, followed by histological examination and immunofluorescence staining at 12 weeks.

Purpose

To investigate the combined in vivo effects of ascorbic acid and a US Food and Drug Administration (FDA)-approved iron supplement on MSC-mediated cartilage repair in mature Göttingen minipigs. Study design: Controlled laboratory study.

Results

Ascorbic acid plus iron-pretreated MSCs demonstrated a significantly better MOCART (magnetic resonance observation of cartilage repair tissue) score (73.8 ± 15.5), better macroscopic cartilage regeneration score according to the International Cartilage Repair Society (8.6 ± 2.0), better Pineda score (2.9 ± 0.8), and larger amount of collagen type II (28,469 ± 21,313) compared with untreated controls (41.3 ± 2.5, 1.8 ± 2.9, 12.8 ± 1.9, and 905 ± 1326, respectively). The obtained scores were also better than scores previously reported in the same animal model for MSC implants without ascorbic acid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。