Abstract
Human breast cancer cells exhibit considerable diversity in the methylation status of genomic DNA CpGs that regulate metastatic transcriptome networks. In this study, we identified human Sipa1 promoter-proximal elements that contained a CpG island and demonstrated that the methylation status of the CpG island was inversely correlated with SIPA1 protein expression in cancer cells. 5-Aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, promoted the expression of Sipa1 in the MCF7 breast cancer cells with a low level of SIPA1 expression. On the contrary, in MDA-MB-231 breast cancer cells with high SIPA1 expression levels, hypermethylation of the CpG island negatively regulated the transcription of Sipa1 In addition, the epithelial-mesenchymal transition (EMT) was reversed after knocking down Sipa1 in MDA-MB-231 cells. However, the EMT was promoted in MCF7 cells with over-expression of SIPA1 or treated with 5-Aza-CdR. Taken together, hypomethylation of the CpG island in Sipa1 promoter-proximal elements could enhance SIPA1 expression in breast cancer cells, which could facilitate EMT of cancer cells, possibly increasing a risk of cancer cell metastasis in individuals treated with 5-Aza-CdR.