Combined-electrical optogenetic stimulation but not channelrhodopsin kinetics improves the fidelity of high rate stimulation in the auditory pathway in mice

电刺激-光遗传学联合刺激(而非通道视紫红质动力学)可提高小鼠听觉通路中高频刺激的保真度。

阅读:1
作者:Elise A Ajay ,Alex C Thompson ,Ajmal A Azees ,Andrew K Wise ,David B Grayden ,James B Fallon ,Rachael T Richardson

Abstract

Novel stimulation methods are needed to overcome the limitations of contemporary cochlear implants. Optogenetics is a technique that confers light sensitivity to neurons via the genetic introduction of light-sensitive ion channels. By controlling neural activity with light, auditory neurons can be activated with higher spatial precision. Understanding the behaviour of opsins at high stimulation rates is an important step towards their translation. To elucidate this, we compared the temporal characteristics of auditory nerve and inferior colliculus responses to optogenetic, electrical, and combined optogenetic-electrical stimulation in virally transduced mice expressing one of two channelrhodopsins, ChR2-H134R or ChIEF, at stimulation rates up to 400 pulses per second (pps). At 100 pps, optogenetic responses in ChIEF mice demonstrated higher fidelity, less change in latency, and greater response stability compared to responses in ChR2-H134R mice, but not at higher rates. Combined stimulation improved the response characteristics in both cohorts at 400 pps, although there was no consistent facilitation of electrical responses. Despite these results, day-long stimulation (up to 13 h) led to severe and non-recoverable deterioration of the optogenetic responses. The results of this study have significant implications for the translation of optogenetic-only and combined stimulation techniques for hearing loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。