Activation of TLR7-mediated autophagy increases epileptic susceptibility via reduced KIF5A-dependent GABAA receptor transport in a murine model

在小鼠模型中,TLR7 介导的自噬激活通过减少 KIF5A 依赖的 GABAA 受体转运增加癫痫易感性

阅读:8
作者:Jing Liu, Pingyang Ke, Haokun Guo, Juan Gu, Yan Liu, Xin Tian, Xuefeng Wang, Fei Xiao

Abstract

The pathophysiological mechanisms underlying epileptogenesis are poorly understood but are considered to actively involve an imbalance between excitatory and inhibitory synaptic transmission. Excessive activation of autophagy, a cellular pathway that leads to the removal of proteins, is known to aggravate the disease. Toll-like receptor (TLR) 7 is an innate immune receptor that regulates autophagy in infectious and noninfectious diseases. However, the relationship between TLR7, autophagy, and synaptic transmission during epileptogenesis remains unclear. We found that TLR7 was activated in neurons in the early stage of epileptogenesis. TLR7 knockout significantly suppressed seizure susceptibility and neuronal excitability. Furthermore, activation of TLR7 induced autophagy and decreased the expression of kinesin family member 5 A (KIF5A), which influenced interactions with γ-aminobutyric acid type A receptor (GABAAR)-associated protein and GABAARβ2/3, thus producing abnormal GABAAR-mediated postsynaptic transmission. Our results indicated that TLR7 is an important factor in regulating epileptogenesis, suggesting a possible therapeutic target for epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。