Cyclic mechanical stimulation inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation via cell cycle arrest

周期性机械刺激通过细胞周期停滞抑制类风湿关节炎成纤维细胞样滑膜细胞增殖

阅读:15
作者:Yan Yan, Huiru Zou, Xiaoli Lian, Li Yang

Abstract

The imbalance between proliferation and apoptosis of fibroblast-like synoviocytes (FLSs) has been the main cause of rheumatoid arthritis (RA) synovial hyperplasia. Our previous study confirmed that the cyclic mechanical stimulation (CMS) inhibited the proliferation of RA FLSs, but the underlying mechanisms are still unclear. This study aimed to investigate these underlying mechanisms. The in vitro cultured human RA FLSs were subjected to CMS (6%, 1.0 Hz). Cell cycle was detected by flow cytometry. The expression of cyclin D1, cyclin E1, CDK-2 and p27 was detected by reverse transcription-polymerase chain reaction (RT-PCR). MTS assay was used to detect cell viability. Cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) levels in RA FLSs were detected by western blotting and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that CMS significantly inhibited the cell cycle transformation of RA FLSs from G1 phase to S phase, which significantly decreased the cell proliferation index. Meanwhile, both cyclin E1 and CDK-2 gene expressions were significantly decreased, p27 gene expression was increased, and no significant change was observed in the expression of cyclin D1. The inhibition of COX-2/PGE2 pathway in RA FLSs by celecoxib treatment showed no effect on the inhibition of RA FLSs proliferation by CMS. In conclusion, CMS inhibited the proliferation of RA FLSs by modulating the expression of cell cycle-related molecules such as cyclin E1, CDK2 and p27 to arrest cell cycle transformation, which is independent of COX-2/PGE2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。