Conditioning attenuates kidney and heart injury in rats following transient suprarenal occlusion of the abdominal aorta

调节可减轻大鼠腹主动脉短暂性肾上闭塞后肾脏和心脏的损伤

阅读:7
作者:Dimitra M Karageorgiadi #, Diamantis I Tsilimigras #, Platonas Selemenakis #, Vassiliki Vlachou, Anne-Lise de Lastic, Maria Rodi, Danai Chatziathanasiou, Konstantinos Savvatakis, Nikolaos Antoniou, Aikaterini C Deli, Alexandros Papalampros, Konstantinos A Filis, Athanasia Mouzaki, Anastasia Varvarig

Abstract

Suprarenal aortic clamping during abdominal aortic aneurysm (AAA) repair results in ischemia-reperfusion injury (IRI) in local (i.e. kidney) and distant (i.e. heart) tissue. To investigate perioperative approaches that mitigate IRI-induced tissue damage, Wistar rats underwent suprarenal aortic clamping either alone or in combination with short cycles of ischemic conditioning before and/or after clamping. Serum analysis revealed significant reduction in key biochemical parameters reflecting decreased tissue damage at systemic level and improved renal function in conditioned groups compared to controls (p < 0.05), which was corroborated by histolopathological evaluation. Importantly, the levels of DNA damage, as reflected by the biomarkers 8-oxo-G, γH2AX and pATM were reduced in conditioned versus non-conditioned cases. In this setting, NADPH oxidase, a source of free radicals, decreased in the myocardium of conditioned cases. Of note, administration of 5-HD and 8-SPT blocking key protective signaling routes abrogated the salutary effect of conditioning. To further understand the non-targeted effect of IRI on the heart, it was noted that serum TGF-β1 levels decreased in conditioned groups, whereas this difference was eliminated after 5-HD and 8-SPT administration. Collectively, conditioning strategies reduced both renal and myocardial injury. Additionally, the present study highlights TGF-β1 as an attractive target for manipulation in this context.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。