Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination

显性负性 G 蛋白可增强激动剂-GPCR-G 蛋白复合物的形成和纯化,以进行结构测定

阅读:13
作者:Yi-Lynn Liang, Peishen Zhao, Christopher Draper-Joyce, Jo-Anne Baltos, Alisa Glukhova, Tin T Truong, Lauren T May, Arthur Christopoulos, Denise Wootten, Patrick M Sexton, Sebastian G B Furness

Abstract

Advances in structural biology have yielded exponential growth in G protein-coupled receptor (GPCR) structure solution. Nonetheless, the instability of fully active GPCR complexes with cognate heterotrimeric G proteins has made them elusive. Existing structures have been limited to nanobody-stabilized GPCR:Gs complexes. Here we present methods for enhanced GPCR:G protein complex stabilization via engineering G proteins with reduced nucleotide affinity, limiting Gα:Gβγ dissociation. We illustrate the application of dominant negative G proteins of Gαs and Gαi2 to the purification of stable complexes where this was not possible with wild-type G protein. Active state complexes of adenosine:A1 receptor:Gαi2βγ and calcitonin gene-related peptide (CGRP):CLR:RAMP1:Gαsβγ:Nb35 were purified to homogeneity and were stable in negative stain electron microscopy. These were suitable for structure determination by cryo-electron microscopy at 3.6 and 3.3 Å resolution, respectively. The dominant negative Gα-proteins are thus high value tools for structure determination of agonist:GPCR:G protein complexes that are critical for informed translational drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。