LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-β1 signaling activity following subarachnoid hemorrhage in rats

LSKL 肽通过抑制大鼠蛛网膜下腔出血后的 TSP1 介导的 TGF-β1 信号活性来减轻蛛网膜下腔纤维化和脑积水

阅读:11
作者:Fan Liao, Gaofeng Li, Wen Yuan, Yujie Chen, Yuchun Zuo, Kauthar Rashid, John H Zhang, Hua Feng, Fei Liu

Abstract

Hydrocephalus has been demonstrated to be an independent risk factor for poor outcomes in patients with subarachnoid hemorrhage (SAH). Blockage of cerebrospinal fluid (CSF) flow and drainage is widely considered to play a vital role in communicating hydrocephalus, possibly due to subarachnoid fibrosis. A previous study indicated that transforming growth factor-β1 (TGF-β1), a key fibrogenic factor, is significantly increased in the CSF following SAH, implying a pivotal role in the development of chronic hydrocephalus. To investigate whether LSKL peptide, a small molecular peptide and competitive antagonist for TGF-β1, protects against subarachnoid fibrosis and hydrocephalus after SAH, a two-hemorrhage injection model of SAH was created in Sprague-Dawley rats. LSKL (1 mg/kg) was administered intraperitoneally immediately following the first intravenous injection of blood in the SAH model, with repeated injections of LSKL every 12 h until sacrifice. Thrombospondin-1 (TSP1), TGF-β1, p-Smad2/3, collagen I and pro-collagen I c-terminal propeptide levels were assessed via western blotting and ELISA. Lateral ventricular index, Masson staining and Morris water maze tests were employed to evaluate subarachnoid fibrosis, hydrocephalus and long-term neurological function following SAH. It was found that the LKSL peptide readily crossed the blood brain barrier, was protective against subarachnoid fibrosis, attenuated ventriculomegaly and effectively suppressed hydrocephalus. In addition, the results indicated that the protective effects of the LSKL peptide were achieved via the inhibition of TGF-β1 activity and subsequent Smad2/3 signaling. Importantly, the LSKL peptide may improve long-term neurocognitive deficits after SAH. In conclusion, the LSKL peptide suppresses subarachnoid fibrosis via inhibition of TSP1-mediated TGF-β1 activity, prevents the development of chronic hydrocephalus and improves long-term neurocognitive defects following SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。