Aortic effects of thyroid hormone in male mice

甲状腺激素对雄性小鼠主动脉的影响

阅读:6
作者:Sogol Gachkar, Sebastian Nock, Cathleen Geissler, Rebecca Oelkrug, Kornelia Johann, Julia Resch, Awahan Rahman, Anders Arner, Henriette Kirchner, Jens Mittag

Abstract

It is well established that thyroid hormones are required for cardiovascular functions; however, the molecular mechanisms remain incompletely understood, especially the individual contributions of genomic and non-genomic signalling pathways. In this study, we dissected how thyroid hormones modulate aortic contractility. To test the immediate effects of thyroid hormones on vasocontractility, we used a wire myograph to record the contractile response of dissected mouse aortas to the adrenergic agonist phenylephrine in the presence of different doses of T3 (3,3',5-triiodothyronine). Interestingly, we observed reduced vasoconstriction under low and high T3 concentrations, indicating an inversed U-shaped curve with maximal constrictive capacity at euthyroid conditions. We then tested for possible genomic actions of thyroid hormones on vasocontractility by treating mice for 4 days with 1 mg/L thyroxine in drinking water. The study revealed that in contrast to the non-genomic actions the aortas of these animals were hyperresponsive to the contractile stimulus, an effect not observed in endogenously hyperthyroid TRβ knockout mice. To identify targets of genomic thyroid hormone action, we analysed aortic gene expression by microarray, revealing several altered genes including the well-known thyroid hormone target gene hairless. Taken together, the findings demonstrate that thyroid hormones regulate aortic tone through genomic and non-genomic actions, although genomic actions seem to prevail in vivo. Moreover, we identified several novel thyroid hormone target genes that could provide a better understanding of the molecular changes occurring in the hyperthyroid aorta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。