Conclusion
Our results indicate that catalpol preadministration could effectively alleviate cognitive impairment and neuropathological damage in isoflurane-exposed aged mice with its neuroprotective effects via modulation of the NLRP3 inflammatory pathway. Furthermore, the NLRP3 inflammatory pathway was revealed to be involved in these effects.
Methods
In our current study, aged mice were exposed to isoflurane to develop a mouse model of PNDs and preconditioned with catalpol for 2 weeks before modeling. Three weeks after isoflurane exposure, behavioral, histological, biochemical, electrophysiological, and immunofluorescent assays were performed.
Results
Our results showed that catalpol preadministration significantly alleviated cognitive impairment in the Morris water maze, novel object recognition, and Y-maze behavioral tests. Neuropathological analyses showed that catalpol preadministration reduced the loss of neurons and synapses; in line with this, it is revealed that hippocampal synaptic plasticity was restored. Mechanistically, catalpol preadministration suppressed the activation of microglia and decreased the expression of NLRP3 inflammasome.
