PCSK9 inhibition interrupts the cross-talk between keratinocytes and macrophages and prevents UVB-induced skin damage

PCSK9 抑制可中断角质形成细胞和巨噬细胞之间的串扰,并防止 UVB 引起的皮肤损伤

阅读:4
作者:Chao Luan, Yingxue He, Wen Liu, Yicheng Rong, Jian Gao, Kang Xu, Hui Yu, Yu Hu, Jiaan Zhang, Kun Chen, Wenjie Guo

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that promotes the degradation of low-density lipoprotein receptors. It is involved in hyperlipidemia as well as other diseases, such as cancer and skin inflammation. However, the detailed mechanism for PCSK9 on ultraviolet B (UVB)-induced skin lesions was not clear. Thus, the role and possible action mechanism of PCSK9 in UVB-induced skin damage in mice were studied here using siRNA and a small molecule inhibitor (SBC110736) against PCSK9. Immunohistochemical staining revealed a significant increase in PCSK9 expression after UVB exposure, indicating the possible role of PCSK9 in UVB damage. Skin damage, increase in epidermal thickness, and keratinocyte hyperproliferation were significantly alleviated after treatment with SBC110736 or siRNA duplexes, compared with that in the UVB model group. Notably, UVB exposure triggered DNA damage in keratinocytes, whereas substantial interferon regulatory factor 3 (IRF3) activation was observed in macrophages. Pharmacologic inhibition of STING or cGAS knockout significantly reduced UVB-induced damage. In the co-culture system, supernatant from UVB-treated keratinocyte induced IRF3 activation in macrophages. This activation was inhibited with SBC110736 and by PCSK9 knockdown. Collectively, our findings reveal that PCSK9 plays a critical role in the crosstalk between damaged keratinocytes and STING activation in macrophages. The interruption of this crosstalk by PCSK9 inhibition may be a potential therapeutic strategy for UVB-induced skin damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。