Chromatin profiling reveals regulatory network shifts and a protective role for hepatocyte nuclear factor 4α during colitis

染色质分析揭示结肠炎期间调节网络转变和肝细胞核因子 4α 的保护作用

阅读:17
作者:Sanjay Chahar, Vishal Gandhi, Shiyan Yu, Kinjal Desai, Richard Cowper-Sal-lari, Yona Kim, Ansu O Perekatt, Namit Kumar, Joshua K Thackray, Anthony Musolf, Nikhil Kumar, A Hoffman, Douglas Londono, Berta N Vazquez, Lourdes Serrano, Hyunjin Shin, Mathieu Lupien, Nan Gao, Michael P Verzi

Abstract

Transcriptional regulatory mechanisms likely contribute to the etiology of inflammatory bowel disease (IBD), as genetic variants associated with the disease are disproportionately found at regulatory elements. However, the transcription factors regulating colonic inflammation are unclear. To identify these transcription factors, we mapped epigenomic changes in the colonic epithelium upon inflammation. Epigenetic marks at transcriptional regulatory elements responded dynamically to inflammation and indicated a shift in epithelial transcriptional factor networks. Active enhancer chromatin structure at regulatory regions bound by the transcription factor hepatocyte nuclear factor 4α (HNF4A) was reduced during colitis. In agreement, upon an inflammatory stimulus, HNF4A was downregulated and showed a reduced ability to bind chromatin. Genetic variants that confer a predisposition to IBD map to HNF4A binding sites in the human colon cell line CaCo2, suggesting impaired HNF4A binding could underlie genetic susceptibility to IBD. Despite reduced HNF4A binding during inflammation, a temporal knockout model revealed HNF4A still actively protects against inflammatory phenotypes and promotes immune regulatory gene expression in the inflamed colonic epithelium. These findings highlight the potential for HNF4A agonists as IBD therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。