A mitochondria-targeting ROS-activated nanoprodrug for self-augmented antitumor oxidation therapy

一种针对线粒体的 ROS 激活纳米前药,用于自我增强抗肿瘤氧化疗法

阅读:5
作者:Zishan Zeng, Yong Luo, Xiaoyu Xu, Ting Shan, Meixu Chen, Zeqian Huang, Yanjuan Huang, Chunshun Zhao

Abstract

Mitochondrion is an ideal target for amplifying ROS attack in antitumor treatment. Benefiting from distinctive properties of mitochondria, the precise delivery of ROS generator to mitochondria could maximumly utilize ROS for oxidation therapy. Herein, we prepared an innovative ROS-activatable nanoprodrug (HTCF) which dually targets tumor cells and mitochondria for antitumor therapy. Cinnamaldehyde (CA) was conjugated to ferrocene (Fc) and triphenylphosphine by thioacetal linker, to synthesize mitochondria-targeting ROS-activated prodrug (TPP-CA-Fc), which subsequently self-assembled into nanoprodrug via host-guest interactions between TPP-CA-Fc and cyclodextrin-decorated hyaluronic acid conjugate. Under mitochondrial high ROS condition, especially in tumor cells, HTCF selectively initiate in-situ Fenton reaction to catalyze H2O2 into highly cytotoxic •OH, ensuring maximum generation and utilization of •OH for precision CDT. Meanwhile, the mitochondrial high ROS trigger thioacetal bond cleavage and CA release. The released CA stimulate mitochondrial oxidative stress aggravation and H2O2 regeneration, which in turn react with Fc for more •OH generation, forming self-amplifying positive feedback cycle of CA release and ROS burst. With self-augmented Fenton reaction and mitochondria-specific destruction, HTCF ultimately induce intracellular ROS burst and severe mitochondrial dysfunction for amplified ROS-mediated antitumor therapy. Such an ingenious organelles-specialized nanomedicine exhibited prominent antitumor effect both in vitro and in vivo, revealing underlying perspectives to amplify tumor-specific oxidation therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。