Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype

特定成骨细胞亚型对听力相关骨骼的过度矿化

阅读:8
作者:Yukiko Kuroda, Katsuhiro Kawaai, Naoya Hatano, Yanlin Wu, Hidekazu Takano, Atsushi Momose, Takuya Ishimoto, Takayoshi Nakano, Paul Roschger, Stéphane Blouin, Koichi Matsuo

Abstract

Auditory ossicles in the middle ear and bony labyrinth of the inner ear are highly mineralized in adult mammals. Cellular mechanisms underlying formation of dense bone during development are unknown. Here, we found that osteoblast-like cells synthesizing highly mineralized hearing-related bones produce both type I and type II collagens as the bone matrix, while conventional osteoblasts and chondrocytes primarily produce type I and type II collagens, respectively. Furthermore, these osteoblast-like cells were not labeled in a "conventional osteoblast"-specific green fluorescent protein (GFP) mouse line. Type II collagen-producing osteoblast-like cells were not chondrocytes as they express osteocalcin, localize along alizarin-labeled osteoid, and form osteocyte lacunae and canaliculi, as do conventional osteoblasts. Auditory ossicles and the bony labyrinth exhibit not only higher bone matrix mineralization but also a higher degree of apatite orientation than do long bones. Therefore, we conclude that these type II collagen-producing hypermineralizing osteoblasts (termed here auditory osteoblasts) represent a new osteoblast subtype. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。