New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis

对乙酰氨基酚毒性的新见解:HMGB1 通过 TLR4-TRIF-RIPK3 轴在体外促进肝细胞坏死

阅读:5
作者:Charlotte Minsart, Claire Liefferinckx, Arnaud Lemmers, Cindy Dressen, Eric Quertinmont, Isabelle Leclercq, Jacques Devière, Richard Moreau, Thierry Gustot

Abstract

Extracellular release of HMGB1 contributes to acetaminophen-induced liver injury. HMGB1 acts as a danger-associated molecular patterns during this toxic process but the mechanisms of action and targeted cells are incompletely defined. Here we studied, in vitro, the role of HMGB1 in amplifying the acetaminophen-induced hepatocyte necrosis process. Using cultured HepaRG cells, primary human hepatocytes and selective chemical inhibitors we evaluated acetaminophen-induced toxicity. We confirmed that addition of acetaminophen induced HepaRG cell death and HMGB1 release. We showed that inhibition of HMGB1 decreased acetaminophen-induced HepaRG cell death, suggesting a feedforward effect. We provide the first evidence that exposure of HepaRG cells to recombinant human HMGB1 (rhHMGB1) also resulted in cell death. Moreover, we found that both acetaminophen and rhHMGB1 induced programmed HepaRG cell necrosis through a RIPK3-dependent mechanism. By using TLR4 blocking antibody, we demonstrated the reduction of the HepaRG cell death induced by acetaminophen and rhHMGB1. Furthermore, inhibition of TRIF, known to induce a RIPK3-dependent cell death, reduced rhHMGB1-induced HepaRG cell death. Our data support that released HMGB1 from acetaminophen-stressed hepatocytes induced necrosis of neighboring hepatocytes by TLR4-TRIF-RIPK3- pathway. This in vitro study gives new insights in the role of HMGB1 in the amplification of acetaminophen-induced toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。