Gravitational change-induced alteration of the vestibular function and gene expression in the vestibular ganglion of mice

重力变化诱导小鼠前庭神经节前庭功能和基因表达改变

阅读:4
作者:Murat Bazek # ,Motoya Sawa # ,Kazuhiro Horii ,Naotoshi Nakamura ,Shingo Iwami ,Chia-Hsien Wu ,Tsuyoshi Inoue ,Fumiaki Nin ,Chikara Abe

Abstract

Gravity has profoundly influenced life on Earth, yet how organisms adapt to changes in gravity remains largely unknown. This study examines vestibular plasticity, specifically how the vestibular system responds to altered gravity. We subjected male C57BL/6J mice to hypergravity (2 G) followed by normal gravity (1 G) to analyze changes in vestibular function and gene expression. Mice showed significant vestibular dysfunction, assessed by righting reflex tests, which persisted for days but reversed at 1 G after exposure to 2 G. Gene expression analysis in the vestibular ganglion identified significant changes in 212 genes out of 49,585 due to gravitational changes. Specifically, 25 genes were upregulated under 2 G and recovered at 1 G after 2 G exposure, while one gene showed the opposite trend. Key neural function genes like Shisa3, Slc25a37, Ntn4, and Snca were involved. Our results reveal that hypergravity-induced vestibular dysfunction is reversible and highlight genes critical for adaptation. Keywords: Hypergravity; Labyrinth; Plasticity; RNA-seq; Vestibular system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。