Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules

利用小分子将胶质母细胞瘤细胞直接重编程为神经元

阅读:7
作者:Christopher Lee, Meghan Robinson, Stephanie M Willerth

Abstract

Glioblastoma multiforme, a type of deadly brain cancer, originates most commonly from astrocytes found in the brain. Current multimodal treatments for glioblastoma minimally increase life expectancy, but significant advancements in prognosis have not been made in the past few decades. Here we investigate cellular reprogramming for inhibiting the aggressive proliferation of glioblastoma cells. Cellular reprogramming converts one differentiated cell type into another type based on the principles of regenerative medicine. In this study, we used cellular reprogramming to investigate whether small molecule mediated reprogramming could convert glioblastoma cells into neurons. We investigated a novel method for reprogramming U87MG human glioblastoma cells into terminally differentiated neurons using a small molecule cocktail consisting of forskolin, ISX9, CHIR99021 I-BET 151, and DAPT. Treating U87MG glioblastoma cells with this cocktail successfully reprogrammed the malignant cells into early neurons over 13 days. The reprogrammed cells displayed morphological and immunofluorescent characteristics associated with neuronal phenotypes. Genetic analysis revealed that the chemical cocktail upregulates the Ngn2, Ascl1, Brn2, and MAP2 genes, resulting in neuronal reprogramming. Furthermore, these cells displayed decreased viability and lacked the ability to form high numbers of tumor-like spheroids. Overall, this study validates the use of a novel small molecule cocktail for reprogramming glioblastoma into nonproliferating neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。