TLR1/2 ligand-stimulated mouse liver endothelial cells secrete IL-12 and trigger CD8+ T cell immunity in vitro

TLR1/2 配体刺激的小鼠肝内皮细胞分泌 IL-12 并在体外触发 CD8+ T 细胞免疫

阅读:6
作者:Jia Liu, Min Jiang, Zhiyong Ma, Kirsten K Dietze, Gennadiy Zelinskyy, Dongliang Yang, Ulf Dittmer, Joerg F Schlaak, Michael Roggendorf, Mengji Lu

Abstract

Liver sinusoidal endothelial cells (LSECs) are unique organ-resident APCs capable of Ag cross-presentation and subsequent tolerization of naive CD8(+) T cells. Under certain conditions, LSECs can switch from a tolerogenic to an immunogenic state and promote the development of T cell immunity. However, little is known about the mechanisms of LSECs to induce T cell immunity. In this study, we investigated whether functional maturation of LSECs can be achieved by TLR ligand stimulation and elucidated the mechanisms involved in LSEC-induced T cell immunity. We demonstrate that pretreatment of LSECs with palmitoyl-3-cysteine-serine-lysine-4 (P3C; TLR1/2 ligand) but not poly(I:C) (TLR3 ligand) or LPS (TLR4 ligand) reverted their suppressive properties to induce T cell immunity. Importantly, P3C stimulation caused functional maturation of Ag-presenting LSECs and enabled them to activate virus-specific CD8(+) T cells. The LSEC-mediated CD8(+) T cell immunity was initiated by soluble mediators, one of which was IL-12 secreted at a low but sustained level after P3C stimulation. P3C stimulation did not induce programmed death ligand 1 expression on LSECs, thereby favoring T cell proliferation and activation instead of suppression. Our data suggest that LSECs undergo maturation exclusively in response to TLR1/2 ligand stimulation and that the immunological status of LSECs was dependent upon the balance between programmed death ligand 1 and IL-12 expression. These results have implications for our understanding of liver-specific tolerance and autoimmunity and for the development of strategies to overcome T cell tolerance in situations such as chronic viral liver infections or liver cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。