Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy

通过噪声光谱揭示钙钛矿太阳能电池中的低温亚稳态

阅读:7
作者:C Barone, F Lang, C Mauro, G Landi, J Rappich, N H Nickel, B Rech, S Pagano, H C Neitzert

Abstract

The hybrid perovskite methylammonium lead iodide CH3NH3PbI3 recently revealed its potential for the manufacturing of low-cost and efficient photovoltaic cells. However, many questions remain unanswered regarding the physics of the charge carrier conduction. In this respect, it is known that two structural phase transitions, occurring at temperatures near 160 and 310 K, could profoundly change the electronic properties of the photovoltaic material, but, up to now, a clear experimental evidence has not been reported. In order to shed light on this topic, the low-temperature phase transition of perovskite solar cells has been thoroughly investigated by using electric noise spectroscopy. Here it is shown that the dynamics of fluctuations detect the existence of a metastable state in a crossover region between the room-temperature tetragonal and the low-temperature orthorhombic phases of the perovskite compound. Besides the presence of a noise peak at this transition, a saturation of the fluctuation amplitudes is observed induced by the external DC current or, equivalently, by light exposure. This noise saturation effect is independent on temperature, and may represent an important aspect to consider for a detailed explanation of the mechanisms of operation in perovskite solar cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。