Neuregulin-1 overexpression and Trp53 haploinsufficiency cooperatively promote de novo malignant peripheral nerve sheath tumor pathogenesis

神经调节蛋白-1过表达和Trp53单倍体不足协同促进新生恶性周围神经鞘瘤的发病机制

阅读:5
作者:Stephanie N Brosius, Amy N Turk, Stephanie J Byer, Nicole M Brossier, Latika Kohli, Amber Whitmire, Fady M Mikhail, Kevin A Roth, Steven L Carroll

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are Schwann cell-derived malignancies that arise from plexiform neurofibromas in patients with mutation of the neurofibromin 1 (NF1) gene. We have shown that the growth factor neuregulin-1 (NRG1) also contributes to human neurofibroma and MPNST pathogenesis and that outbred C57BL/6J × SJL/J transgenic mice overexpressing NRG1 in Schwann cells (P0-GGFβ3 mice) recapitulate the process of neurofibroma-MPNST progression. However, it is unclear whether NRG1 acts predominantly within NF1-regulated signaling cascades or instead activates other essential cascades that cooperate with NF1 loss to promote tumorigenesis. We now report that tumorigenesis is suppressed in inbred P0-GGFβ3 mice on a C57BL/6J background. To determine whether NRG1 overexpression interacts with reduced Nf1 or Trp53 gene dosage to "unmask" tumorigenesis in these animals, we followed cohorts of inbred P0-GGFβ3;Nf1+/−, P0-GGFβ3;Trp53+/− and control (P0-GGFβ3, Nf1+/− and Trp53+/−) mice for 1 year. We found no reduction in survival or tumors in control and P0-GGFβ3;Nf1+/− mice. In contrast, P0-GGFβ3;Trp53+/− mice died on average at 226 days, with MPNSTs present in 95 % of these mice. MPNSTs in inbred P0-GGFβ3;Trp53+/− mice arose de novo from micro-MPNSTs that uniformly develop intraganglionically. These micro-MPNSTs are of lower grade (WHO grade II-III) than the major MPNSTs (WHO grade III-IV); array comparative genomic hybridization showed that lower grade MPNSTs also had fewer genomic abnormalities. Thus, P0-GGFβ3;Trp53+/− mice represent a novel model of low- to high-grade MPNST progression. We further conclude that NRG1 promotes peripheral nervous system neoplasia predominantly via its effects on the signaling cascades affected by Nf1 loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。