Genome wide identification and experimental validation of Pseudomonas aeruginosa Tat substrates

铜绿假单胞菌 Tat 底物的全基因组鉴定和实验验证

阅读:5
作者:Maxime Rémi Gimenez, Govind Chandra, Perrine Van Overvelt, Romé Voulhoux, Sophie Bleves, Bérengère Ize

Abstract

In bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence. However, the full set of Tat substrates is unknown in many bacteria, and the reliability of in silico prediction methods largely uncertain. In this work, we performed a combination of in silico analysis and experimental validation to identify a core set of Tat substrates in the opportunistic pathogen Pseudomonas aeruginosa. In silico analysis predicted 44 putative Tat signal peptides in the P. aeruginosa PA14 proteome. We developed an improved amidase-based Tat reporter assay to show that 33 of these are real Tat signal peptides. In addition, in silico analysis of the full translated genome revealed a Tat candidate with a missassigned start codon. We showed that it is a new periplasmic protein in P. aeruginosa. Altogether we discovered and validated 34 Tat substrates. These show little overlap with Escherichia coli Tat substrates, and functional analysis points to a general role for the P. aeruginosa Tat system in the colonization of environmental niches and pathogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。