Scalable Self-Assembly of Composite Nanofibers into High-Energy-Density Li-Ion Battery Electrodes

复合纳米纤维可扩展自组装成高能量密度锂离子电池电极

阅读:7
作者:Heng Wang, Yuling Xiong, Kate Sanders, Sul Ki Park, Jeremy J Baumberg, Michael F L De Volder

Abstract

The application of nanosized active particles in Li-ion batteries has been the subject of intense investigation, yielding mixed results in terms of overall benefits. While nanoparticles have shown promise in improving rate performance and reducing issues related to cracking, they have also faced criticism due to side reactions, low packing density, and consequent subpar volumetric battery performance. Interesting processes such as self-assembly have been proposed to increase packing density, but these tend to be incompatible with scalable processes such as roll-to-roll coating, which are essential to manufacture electrodes at scale. Addressing these challenges, this research demonstrates the long-range self-assembly of carbon-decorated V2O5 nanofiber cathodes as a model system. These nanorods are closely packed into thick electrode films, exhibiting a high volumetric capacity of 205 mA h cm-3at 0.2 C. This surpasses the volumetric capacity of unaligned V2O5 nanofiber electrodes (82 mA h cm-3) under the same cycling conditions. We also demonstrate that these energy-dense electrodes retain an excellent capacity of up to 190.4 mA h cm-3(<2% loss) over 500 cycles without needing binders. Finally, we demonstrate that the proposed self-assembly process is compatible with roll-to-roll coating. This work contributes to the development of energy-dense coatings for next-generation battery electrodes with high volumetric energy density.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。