The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells

在同源人类干细胞中,早老素-1 ΔE9 突变导致 γ-分泌酶活性降低,但并未导致 PS1 功能完全丧失

阅读:5
作者:Grace Woodruff, Jessica E Young, Fernando J Martinez, Floyd Buen, Athurva Gore, Jennifer Kinaga, Zhe Li, Shauna H Yuan, Kun Zhang, Lawrence S B Goldstein

Abstract

Presenilin 1 (PS1) is the catalytic core of γ-secretase, which cleaves type 1 transmembrane proteins, including the amyloid precursor protein (APP). PS1 also has γ-secretase-independent functions, and dominant PS1 missense mutations are the most common cause of familial Alzheimer's disease (FAD). Whether PS1 FAD mutations are gain- or loss-of-function remains controversial, primarily because most studies have relied on overexpression in mouse and/or nonneuronal systems. We used isogenic euploid human induced pluripotent stem cell lines to generate and study an allelic series of PS1 mutations, including heterozygous null mutations and homozygous and heterozygous FAD PS1 mutations. Rigorous analysis of this allelic series in differentiated, purified neurons allowed us to resolve this controversy and to conclude that FAD PS1 mutations, expressed at normal levels in the appropriate cell type, impair γ-secretase activity but do not disrupt γ-secretase-independent functions of PS1. Thus, FAD PS1 mutations do not act as simple loss of PS1 function but instead dominantly gain an activity toxic to some, but not all, PS1 functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。