Novel role of Vav1-Rac1 pathway in actin cytoskeleton regulation in interleukin-13-induced minimal change-like nephropathy

Vav1-Rac1 通路在白细胞介素-13 诱发的微小病变样肾病中肌动蛋白细胞骨架调节的新作用

阅读:7
作者:Chang-Yien Chan, Kar-Hui Ng, Jinmiao Chen, Jinhua Lu, Caroline Guat-Lay Lee, Puay-Hoon Tan, Stanley C Jordan, Henry Yang He, Hui-Kim Yap

Abstract

Our established interleukin-13 (IL-13) overexpression rat model of minimal change-like nephropathy provided a platform to study the molecular signalling pathways in T-helper 2 (Th2) cytokine associated minimal change nephrotic syndrome (MCNS). We hypothesized that IL-13 may act directly on podocytes, causing podocyte foot process effacement and hence proteinuria in our rat model of minimal change-like nephropathy. The present study aimed firstly to delineate the glomerular 'gene signature' associated with IL-13-mediated dysregulation of podocyte-related proteins, and subsequently to investigate the role of the differentially regulated genes (DEGs) in IL-13-mediated podocyte injury. Glomerular transcriptional profile of IL-13-overexpressed rats showed characteristic features of podocyte injury with 87% of podocyte-related genes being significantly down-regulated. Gene expression of Vav1 was shown to be highly up-regulated in the glomeruli of IL-13-overexpressed rats and pathway analysis of the DEGs suggested a possible novel role of Vav1 in podocyte cytoskeleton remodelling. Immunofluorescence examination demonstrated glomerular expression of Vav1 in rats which co-localized with synaptopodin, confirming podocyte expression. However, positive staining for the phosphorylated form of Vav1 (p-Vav1) was only seen in IL-13-overexpressed rats. Moreover, in vitro IL-13 stimulation of human podocytes resulted in phosphorylation of Vav1. This was associated with Rac1 activation and actin cytoskeleton rearrangement, which was abrogated in Vav1 knockdown podocytes. In conclusion, we have demonstrated the role of Vav1-Rac1 pathway characterized by phosphorylation of Vav1, activation of Rac1 and the subsequent actin cytoskeleton rearrangement in IL-13-induced podocyte injury, possibly explaining the podocyte foot process effacement seen in our IL-13 overexpression rat model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。