Complex patterns of population genetic structure of moose, Alces alces, after recent spatial expansion in Poland revealed by sex-linked markers

性连锁标记揭示了波兰近期空间扩张后驼鹿(Alces alces)种群遗传结构的复杂模式

阅读:19
作者:Magdalena Swisłocka, Magdalena Czajkowska, Norbert Duda, Jan Danyłow, Edyta Owadowska-Cornil, Mirosław Ratkiewicz

Abstract

In recent years, human activity directly and indirectly influenced the demography of moose in Poland. The species was close to extinction, and only a few isolated populations survived after the Second World War; then, unprecedented demographic and spatial expansions had occurred, possibly generating a very complex pattern of population genetic structure at the present-day margins of the species range in Poland. Over 370 moose from seven populations were collected from Poland, and partial sequences of the mitochondrial control region (mtDNA-cr; 607 bp) were obtained. In addition, the entire mtDNA cytochrome b gene (1,140 bp) and Y-chromosome markers (1,982 bp in total) were studied in a chosen set of individuals. Twelve mtDNA haplotypes that all belonged to the European moose phylogroup were recorded. They could be divided into two distinct clades: Central Europe and the Ural Mountains. The first clade consists of three distinct groups/branches: Biebrza, Polesie, and Fennoscandia. The Biebrza group has experienced spatial and demographic expansion in the recent past. Average genetic differentiation among moose populations in Poland at mtDNA-cr was great and significant (ΦST = 0.407, p < 0.001). Using mtDNA-cr data, four separate groups of population were recognized using spatial analysis of molecular variance and principal coordinate analysis, including a relict population in Biebrza National Park, a reintroduced Kampinos National Park population, as well as populations that were descendants of moose that colonized Poland from the east (Lithuania, Belarus, and Ukraine) and the north (former East Prussia). Among all the sequenced Y-chromosome markers, polymorphisms were found in the DBY14 marker in three populations only; four haplotypes were recorded in total. No significant differentiation was detected for this Y-linked marker among moose populations in Poland. Our mtDNA study revealed that a variety of different factors-bottleneck, the presence of relict, autochthonous populations, translocations, limited female dispersal, and the colonization from the east and north-are responsible for the observed complex pattern of population genetic structure after demographic and spatial expansion of moose in Poland.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。