In Vitro Stimulation of Multidrug Resistance-Associated Protein 2 Function Is Not Reproduced In Vivo in Rats

体外刺激多药耐药相关蛋白 2 功能无法在大鼠体内重现

阅读:8
作者:Ravindranath Reddy Gilibili, Vishwanath Kurawattimath, Bokka Venkata Murali, Yurong Lai, T Thanga Mariappan, Hong Shen, Sagnik Chatterjee

Abstract

Previously we reported that coproporphyrin-I (CP-I) is an optimal probe substrate for multidrug resistance-associated protein 2 (MRP2), and stimulation of MRP2-mediated transport is probe substrate-dependent. In the present investigation, we assessed if the in vitro stimulation is physiologically relevant. Similar to human MRP2 transport, CP-I was transported by rat Mrp2 in a typical Michaelis-Menten kinetics with apparent Km and Vmax values of 15 ± 6 µM and 161 ± 20 pmol/min/mg protein, respectively. In vivo Mrp2 functions were monitored by biliary and renal secretion of CP-I and its isomer CP-III, in bile-duct cannulated rats before and after treatment with mitoxantrone, progesterone, and verapamil. These compounds stimulated Mrp2-mediated CP-I transport in vitro. No significant increase in biliary or renal clearances, as well as in the cumulative amount of CP-I or CP-III eliminated in bile, were detected following treatment with the in vitro stimulators, indicating an in vitro to in vivo disconnect. In presence of 10 µM bilirubin, the in vitro stimulation was suppressed. We concluded that the in vitro stimulation of CP-I transport mediated by Mrp2 is not translatable in vivo, and proposed that the presence of endogenous compounds such as bilirubin in the liver may contribute to the in vitro to in vivo disconnect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。