Systematic Part Transfer by Extending a Modular Toolkit to Diverse Bacteria

通过将模块化工具包扩展到多种细菌来实现系统部件转移

阅读:8
作者:Kevin W Keating, Eric M Young

Abstract

It is impractical to develop a new parts collection for every potential host organism. It is well-established that gene expression parts, like genes, are qualitatively transferable, but there is little quantitative information defining transferability. Here, we systematically quantified the behavior of a parts set across multiple hosts. To do this, we developed a broad host range (BHR) plasmid system compatible with the large, modular CIDAR parts collection for E. coli, which we named openCIDAR. This enabled testing of a library of DNA constructs across the Pseudomonadota─Escherichia coli, Pseudomonas putida, Cupriavidus necator, and Komagataeibacter nataicola. Part performance was evaluated with a standardized characterization procedure that quantified expression in terms of molecules of equivalent fluorescein (MEFL), an objective unit of measure. The results showed that the CIDAR parts enable graded gene expression across all organisms─meaning that the same parts can be used to program E. coli, P. putida, C. necator, and K. nataicola. Most parts had a similar expression trend across hosts, although each organism had a different average gene expression level. The variability is enough that to achieve the same MEFL in a different organism, a lookup table is required to translate a design from one host to another. To identify truly divergent parts, we applied linear regression to a combinatorial set of promoters and ribosome binding sites, finding that the promoter J23100 behaves very differently in K. nataicola than in the other hosts. Thus, it is now possible to evaluate any CIDAR compatible part in three other hosts of interest, and the diversity of these hosts implies that the collection will also be compatible with many other Proteobacteria (Pseudomonadota). Furthermore, this work defines an approach to generalize modular synthetic biology parts sets beyond a single host, implying that only a few parts sets may be needed to span the tree of life. This will accelerate current efforts to engineer diverse species for environmental, biotechnological, and health applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。