Response and disease resistance evaluation of sorghum seedlings under anthracnose stress

高粱幼苗对炭疽病胁迫的响应及抗病性评价

阅读:5
作者:Songshu Chen, Zhi Zhao, Xiaojuan Liu, Kuiyin Li, Muhammad Arif, Beiju Zhang, Lili Dong, Rui Wang, Mingjian Ren, Xin Xie

Abstract

Sorghum is the world's fifth-largest cereal crop, and anthracnose (Colletotrichum sublineola) is the main disease affecting sorghum. However, systematic research on the cellular structure, physiological and biochemical, and genes related to anthracnose resistance and disease resistance evaluation in sorghum is lacking in the field. Upon inoculation with anthracnose (C. sublineola) spores, disease-resistant sorghum (gz93) developed a relative lesion area (RLA) that was significantly smaller than that of the disease-susceptible sorghum (gz234). The leaf thickness, length and profile area of leaf mesophyll cells, upper and lower epidermal cells decreased in the lesion area, with a greater reduction observed in gz234 than in gz93. The damage caused by C. sublineola resulted in a greater decrease in the net photosynthetic rate (Pn) in gz234 than in gz93, with early-stage reduction due to stomatal limitation and late-stage reduction caused by lesions. Overall, the activities of superoxide dismutase (SOD) and catalase (CAT), the content of proline (Pro), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and gibberellic acid (GA3), are higher in gz93 than in gz234 and may be positively correlated with disease resistance. While malondialdehyde (MDA) may be negatively correlated with disease resistance. Disease-resistant genes are significantly overexpressed in gz93, with significant expression changes in gz234, which is related to disease resistance in sorghum. Correlation analysis indicates that GA3, MDA, peroxidase (POD), and disease-resistance genes can serve as reference indicators for disease severity. The regression equation RLA = 0.029 + 8.02 × 10-6 JA-0.016 GA3 can predict and explain RLA. Principal component analysis (PCA), with the top 5 principal components for physiological and biochemical indicators and the top 2 principal components for disease-resistant genes, can explain 82.37% and 89.11% of their total variance, reducing the number of evaluation indicators. This study provides a basis for research on the mechanisms and breeding of sorghum with resistance to anthracnose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。