Inhibition of circular JUN prevents the proliferation and invasion of glioblastoma via miR-3064-IGFBP5 axis

抑制环状JUN通过miR-3064-IGFBP5轴阻止胶质母细胞瘤的增殖和侵袭

阅读:7
作者:Yuhao Zhang, Shiming Liu, Cheng Wu, Xin Gao, Hongtao Zhao, Ou Li, Faliang Gao

Abstract

Glioblastoma (GBM) remains one of the most aggressive and lethal brain tumours, characterized by rapid progression and limited treatment options. This study investigated the regulatory roles of circular RNA circJUN, and its functional interaction with microRNA miR-3064 in GBM pathogenesis. We employed bioinformatic analyses and clinical sample validation to identify circJUN as a potential target in GBM. Subsequently, we engineered GBM cell lines with stable circJUN knockout or overexpression, and transfected them with miR-3064 mimic/inhibitor or IGFBP5 small interfering RNA (siRNA)/expression vector to elucidate the molecular mechanisms governing GBM proliferation and invasion. To investigate the in vivo effects, xenograft tumour models were established in nude mice using engineered cells to assess the roles of circJUN in tumour growth regulation. Our analyses revealed significant overexpression of circJUN in GBM tissues compared to healthy controls, which strongly correlated with poor patient prognosis. In vitro and in vivo experiments demonstrated that circJUN overexpression could enhance GBM cell proliferation and invasion. Mechanistic investigations uncovered EIF4A3 as an interacting factor of circJUN which promotes circJUN expression, and circJUN modulates miR-3064 activity to regulate the malignancy of GBM cells. Furthermore, we identified IGFBP5, a crucial regulator of cell growth, as a direct target of miR-3064, thereby establishing an additional layer of control over GBM proliferation and invasion. Our study unveils a complex regulatory network involving circJUN, miR-3064 and IGFBP5 in GBM pathogenesis, underscoring their potential as novel therapeutic targets for improving patient outcomes. Our findings not only contribute to the understanding of GBM biology but also pave the way for innovative therapeutic approaches in the management of this malignancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。