Dose-dependent reversal of KCC2 hypofunction and phenobarbital-resistant neonatal seizures by ANA12

ANA12 剂量依赖性地逆转 KCC2 功能减退和苯巴比妥抵抗性新生儿癫痫

阅读:6
作者:B M Carter, B J Sullivan, J R Landers, S D Kadam

Abstract

Neonatal seizures have an incidence of 3.5 per 1000 newborns; while hypoxic-ischemic encephalopathy (HIE) accounts for 50-60% of cases, half are resistant to 1st-line anti-seizure drugs such as phenobarbital (PB). Tyrosine receptor kinase B (TrkB) activation following ischemic injury is known to increase neuronal excitability by downregulation of K-Cl co-transporter 2 (KCC2); a neuronal chloride (Cl-) co-transporter. In this study, three graded doses of ANA12, a small-molecule selective TrkB antagonist, were tested in CD1 mice at P7 and P10 following induction of neonatal ischemia by a unilateral carotid ligation. The PB loading dose remained the same in all treatment groups at both ages. Evaluation criteria for the anti-seizure efficacy of ANA12 were: (1) quantitative electroencephalographic (EEG) seizure burden and power, (2) rescue of post-ischemic KCC2 and pKCC2-S940 downregulation and (3) reversal of TrkB pathway activation following ischemia. ANA12 significantly rescued PB resistant seizures in a dose-dependent manner at P7 and improved PB efficacy at P10. Additionally, female pups responded better to lower doses of ANA12 compared to males. ANA12 significantly reversed post-ischemic KCC2 downregulation and TrkB pathway activation at P7 when PB alone was inefficacious. Rescuing KCC2 hypofunction may be critical for preventing emergence of refractory seizures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。